Friday, 18 November 2022

FIFA World Cup 2022 - Who will win? What are the chances for England and Wales?

 


With the FIFA World Cup 2022 in Qatar just two days away the big question dominating conversations in the pubs, staff rooms, canteens and internet forums is 'who do you think will win it?'

It's a great question and opinions are split. Most football fans will have their opinions.

The BBC has reported that statistical experts at Opta/Stats Perform have crunched the numbers and run the algorithms to predict that Brazil has the best chance to win (15.8% chance), followed closely by Argentina (12.6), France (12.2), Spain (9.1), and England (8.7).  

You don't really need a PhD in computer science to come to those conclusions, a simple glance at the FIFA World Rankings places its top 5 as being Brazil, Belgium, Argentina, France, and England. So the only real surprise is their altogether omission of Belgium and maybe also the insertion of Spain as 4th favourite (FIFA rank them in 7th place). 

A glance around the likes of BBC and Sky Sports pundit teams suggests that the ex-footballer's and TV presenters choices also show a trend towards Brazil, Argentina and France. 

As usual we here at SoccerMadBoffins have also made our own predictions and to show if we're more accurate that random chance we have also rolled the dice to see what the fickle finger of fate points at.

Also as usual, we'll produce a more detailed summary of all our working out in due course, but for the sake of brevity here are our predictions compared to those of the maths wizards at Opta/Stats Perform, once again begging the question: Algorithm, human brain, or random chance? 




Alex's predictions are boringly similar to Opta but re-ordered. Has he been too slavish to FIFA rankings?

Kevin favours Germany and also predicts a good run for England. Is he a visionary or way off?

As usual, most interestingly are the dice, which favour British minnows Wales to win the final 6-0 against USA, and for Germany to win third-place playoff against Portugal 6-1.

This leads to our next question, what are the chances for our 'Home Nation' sides England and Wales, both in Group B?


England

Opta predicts England have a 63% chance to top the Group, 17% chance of reaching the final and 8.7% chance to win it, as we mentioned above this makes them the fifth most likely team to win.

Alex also predicts that England will top Group B, before losing to Netherlands on penalties in the Round of 16 (sound familiar?)

Kevin sees England as finishing in third place, losing to Germany on penalties in the semi-final (sound even more familiar?). He also thinks that the Three Lions will top Group B

The Dice however predict England to finish bottom of Group B suffering defeat to IR Iran, and scraping draws with USA and Wales.


Wales

Opta predicts Wales has a 13.9% chance to win Group B, 1.8% chance to reach the final and 0.6% chance to win the tournament.

Alex thinks that Wales will finish Group B as runners-up, before losing to Senegal in the Round of 16.

Kevin believes Wales could finish Group B in second place, before losing to Netherlands in the Round of 16.

The dice meanwhile will win Group B, beat Senegal in the Round of 16 (winning on penalties after a thrilling 6-6 draw), beat Saudi Arabia 4-3 in the Quarter Finals, Germany 3-2 in the Semi-Finals, and win the Cup by beating USA by 6-0 in the Final. Ultimately this hinges on Wales having world beating fire-power to overcome defensive deficiency. The big question is: Do they have a new Ian Rush?


As usual, all predictions are personal opinions and are just for fun.  We make no claims or suggestions for any betting purposes. Please do not allow our ideas to inform any betting decisions.


Sunday, 13 November 2022

Guest Lecture by David Smith

 

On Thursday 10th November Dr Alex Gillett hosted David Smith, CB, FCIPS, as part of the Public Sector Leaders seminar series at University of York School for Business and Society. David's talk had the title 'Procurement is the new rock n' roll'.


The talk mostly focussed on the history and development of Government Procurement and its professionalisation within the civil service.



The relevance to Soccer Mad Boffins is that David is a former football referee with the Surrey FA and he made some comparison between refereeing football games and overseeing procurement as part of the presentation.

David is also frontman of the band Gypsy's Kiss, a forerunner of Iron Maiden, which reunited in 2018 to play live gigs with a new line-up based around David as an original member.  They have music on CD and streaming services such as Spotify, t-shirts and more: https://www.gypsyskiss.net




David gave a fascinating talk and afterwards took many questions from the enthusiastic audience. At the very end he presented Alex with a Gypsy's Kiss t-shirt.


Africa Business of Sport Podcast



The Soccer Mad Boffins were thrilled that our recent book chapter on the business history of the FIFA World Cup was the subject of discussion for a recent podcast by the Africa Business of Sport podcast.

Hosts Edem Spio and Jabu Mtwa had really enjoyed reading our work and their in-depth coverage of our chapter, and of others which formed the basis for subsequent episodes, is a great endorsement of the book.

Hear the episode here.

The Africa Business of Sport Podcast offers dynamic African perspectives on the biggest topics, stories, developments and talking points in the global sports business industry from the leading figures in the African sport business.


The Africa Business of Sport Podcast is an Africo Media Network production.

Friday, 14 October 2022

Guest Lecture by Professor Jonathan Sullivan: 'China's Engagement with the Global Game'

Dr Jonathan Sullivan sits with Soccermadboffin Dr Alex G. Gillett. 

(Photo credit: Prof Neil Lunt)


On Wednesday 12th October, the University of York School for Business & Society proudly hosted Professor of Political Science Jonathan Sullivan, from Nottingham University.

The event was a lecture on 'China's Engagement with the Global Game', the department's prestigious Social Policy East Asia Exchange Workshop series.

We have previously reported on Jonathan's China Soccer Observatory which he leads alongside Professor Simon Chadwick. 

The guest lecture highlighted Chinese government policy towards developing football domestically and in the international arena. The talk, which lasted for around an hour, was followed by some excellent questions and discussion from staff and students, which Professor Sullivan answered in great detail.

The event was organised and attended by several of York's experts in social policy including Professor Neil Lunt, Professor John Hudson, and Dr Sabrina Chai, amongst others. Special thanks also to Eric Swales who also helped to organise and to promote the event.

We look forward to hearing more from Jonathan in future.



Olympic Studies Centre 40th anniversary live event

On Wednesday 5th October 2022 we had the great pleasure to attend online the Olympic Studies Centre 40th anniversary event, broadcast from the OSC in Lausanne, Switzerland.

Speeches were given by several key figures including:

- International Olympic Committee (IOC) President Thomas Bach,  

- Head of the Olympic Studies Centre (OSC), Maria Bogner.

We have previously undertaken research within the OSC which is situated in Lausanne, Switzerland, using their library and archives to inform our research,  such as for our book 'foundations of managing sporting events'.

We congratulate the OSC on its anniversary and look forward to working there again in future.


International Olympic Committee (IOC) President Thomas Bach gives a rousing speech


 Head of the Olympic Studies Centre (OSC), Maria Bogner outlines fourty years of achievement

Wednesday, 21 September 2022

Predicting the 2022 UEFA Women’s European Championship A report by SOCCER MAD BOFFINS

  



1.0      INTRODUCTION & METHOD


This analysis is based on predictions for the knockout stages of the UEFA 2022 (Women’s) European Championship Finals, which took place between 6-31 July 2022 (the tournament was postponed from 2021). The objective of this report was to have a bit of fun and to see how accurately we could predict the tournament.  Two academics (Dr Alex Gillett and Dr Kevin D Tennent, both editors of Soccermadboffins website) recorded their predictions at each stage (Group, Quarter-Final, Semi-Final and then Final) as just prior to each stage, once the competing teams were known. This was done using UEFAs own tournament prediction tool on its website


A third set of predictions was undertaken at the same time by rolling 2x6 sided dice. A roll of 1-3 meant that was how many goals were scored, 4-5 = nil, whilst a roll of 6 meant roll again and whatever number 1-6 is the total number of goals (this was to allow for the possibility of particularly high scoring games). The idea of the third set of predictions by rolling two ‘random dice’ was for comparison, to see if we could perform better than random chance. We acknowledge that the six-sided dice somewhat limits the ‘random’ score but it gives an approximation, and it is the same method we have used for previous tournaments so it allows comparison. 


We thus followed the ‘Analysis Z’ method of our previous tournament production reports, which predicted results and goals based only on actual fixtures. We did not simulate the entire tournament before it began with hypothetical knockout stage fixtures. This was due to the lack of time availability and the lack of a formulated spreadsheet that we could download ‘off the shelf’ as with previous tournaments. We hope that in future the Women’s Euros will be popular enough to attract the attention of spreadsheet prediction architects, or that we have more time with which to create our own.


Results show that predicting game outcomes (which team wins, or a draw) was for us a lot easier to do than to predict how many goals either side will score.  Alex was the overall best predictor (outcomes and goals) and the only ‘player’ to get over 50%, all because of his 64% accuracy of predicting game outcomes.  Kevin did quite well at predicting the Group stages but was less successful in later rounds and also found it hard to predict score-lines. The ‘random’ dice roles scored only around 19% at game outcomes and overall and was a noticeably less effective means to predict games than was applying common sense.

 


 2.0      FINDINGS

Firstly, we predicted the group stage, the first phase of the tournament comprising four (4) groups, A-D. 

The groups each contained four teams and the top two finishers in each group (50%) automatically progressed to the next stage, the ‘Quarter Final’, whilst the two lowest ranked from each group (also 50%) were eliminated from the tournament. 


Thereafter, knockout Stages involved teams that qualified from the Group Stages: 

  • Quarter Finals (8 teams) 
  • Semi-Finals (4 teams) 
  • The Final (2 teams)

 


2.1      Group Stage

Here’s how we calculated the points, a maximum of 5 points per game were up for grabs (or 180 points overall in this stage) 


·       Correct outcome: 3 points (108 overall)

·       Home goals: 1 pt (36 overall)

·      Away goals; 1 pt (36 overall)


According to the analysis in the table on next page, Alex was most effective at predicting outcomes (which team won, or if they finished with a ‘draw’) with an impressive score of 51 (70.833% accuracy), compared to Kevin who scored 45 (=62.5%). The dice were not a very useful predictor managing only 31 (43%). 


Regarding the goals scored per home team, Kevin had superior predictive power getting it correct in 8 instances (33.333%) and Alex scored 6 points (equating to 25%).

Regarding ‘away’ goals scored, Alex again scored 6 (25%) and Kevin again did slightly better with 7 (29.166%).


The dice’ random predictions did as well as Alex and not far behind Kevin for away goals (6, or 25%) but worse than either real player for home goals, predicting just 4 correctly (16.66%).


So, real brains did substantially better at predicting game outcomes and the exact number of goals scored by ‘away’ teams, but only Kevin was more accurate than random luck at guessing ‘home’ goals.

Both Alex and Kevin did quitte well with overall totals of 46% (Alex) and 43% (Kevin) meaning that they were about as good at predicting. However given the complexity of doing so in terms of outcome, and goals per team, these scores do not look low. As usual the random dice scored 22% suggesting that the Pareto 80:20 rule could be important here!


Fixture

Actual

Alex

Kevin

Dice

England v Austria

1-0

3v1

2v1

0v0

Norway v N ireland

4-1

3v0

1v1

0v1

Austria v N. Ireland

2-0

2v0

3v1

0v2

England v Norway

8-0

2v1

2v1

3v2

Austria v Norway

1-0

1v2

1v2

1v3

Northern Ireland v England

0-5

0v3

1v5

3v2

Spain v Finland

4-1

1v2

1v2

1v2

Germany v Denmark

4-0

2v2

3v1

1v6

Denmark v Finland

1-0

2v1

1v1

3v1

Germany v Spain

2-0

3v0

2v3

4v4

Denmark v Spain

0-1

2v1

0v2

0v0

Finland v Germany

0-3

2v3

1v4

3v0

Portugal v Switzerland

2v2

1v3

2v0

3v2

Netherlands v Sweden

1v1

2v2

3v2

0v3

Sweden v Switzerland

2v1

2v0

2v1

3v0

Netherlands v Portugal

3v2

2v1

2v1

3v0

Sweden v Portugal

5v0

2v1

2v0

1v0

Switzerland v Netherlands

1v4

0v3

0v2

0v0

Belgium v iceland

1v1

1v2

0v0

1v1

France v Italy

5v1

2v1

1v1

1v0

Italy v Iceland

1v1

2v2

0v1

2v1

France v Belgium

2v1

3v3

4v1

0v1

Italy v Belgium

0v1

1v2

0v1

3v2

Iceland v France

1v3

1v3

1v5

5v1

Outcome

72

51 (70.8%)

45 (62.5%)

21 (29.2%)

Goals Home

24

6 (25%)

8 (33.3%)

4 (16.7%)

Goals Away

24

6 (25%)

7 (29.2%)

6 (25%)

 

TOTAL POINTS

116 (100%)

63 (54%)

60 (52%)

31 (27%)


Table A showing group stage results and points according to AnalysIs Z

 



2.2      Knockout Stages

We then predicted scores and outcomes for the Quarter-Final, Semi-Final and the Final.


2.2.1    Quarter Final

 

Actual 

 

AG

 

KT

 

Dice

England v Spain

2v1

2v1

3v2

0v3

Germany v Austria

3v0

3v0

4v0

3v2

Sweden v Belgium

2v1

2v1

1v1 (0v0 AET, 4v5 pens)

3v3 (3v1 AET)

France v Netherlands

2v1

2v1

3v2

1v0

Outcome

12 (100%)

12 (100%)

12(100%)

 

9 (75%)

Goals Home

4 (100%)

4 (100%)

0 (0%)

 

0 (0%)

Goals Away

4 (100%)

4 (100%)

1 (25%)

0 (0%)

 

TOTAL POINTS

20 (100%)

20 (100%)

13 (65%)

9 (45%)

 

Table B showing results and predictions for the Quarter Final

 

2.2.2    Semi-Final

At this point there were just two games featuring four teams, so showing % is a bit misleading if comparing accuracy to earlier rounds. However, we show them as part of our overall analysis of comparison when considering predictive power across the tournament.  Kevin was  the best performer in this round with 9 points (90% accuracy), Alex was just behind with 8 (80%). The dice random guessing yielded 0.

 

Actual

AG

KT

Dice

England v Sweden

4-0

3-1

2-0

0-2

Germany v France

2-1

2-1

2-1

0-2

Outcome

6 (100%)

6 (100%)

6 (100%)

0 (0%)

Goals Home

2 (100%)

1 (50%)

1 (50%)

0 (0%)

Goals Away

2 (100%)

1 (50%)

2 (100%)

0 (0%)

TOTAL POINTS

10 (100%)

8 (80%)

9 (90%)

0 (0%)

Table C showing results and predictions for the Semi Final


2.2.3    Final

The most famous fixture in Europe? Certainly one of them. Full 5 points (100%) to Alex, a tremendous 4 (80%) to Kevin and a hapless 0 to the dice.


 

Actual Result

AG

KT

Dice

England v Germany

2v1 (100%)

2-1 (100%)

3-1

0-0, 0-3 AET

Outcome

3 (100%)

3 (100%)

3 (100%)

0 (0%)

Goals Home

1 (100%)

1 (100%)

0 (0%)

0 (0%)

Goals Away

1 (100%)

1 (100%)

1 (100%)

0 (0%)

TOTAL POINTS

5 (100%)

5 (100%)

4 (80%)

0 (0%)

Table D showing results and predictions for the Final

 


3.0      DISCUSSION


We now summarise our predictions and provide concluding remarks.


3.1 Summary of Predictions


In the Group stages, Alex was the best predictor of results based on Analysis Z (three points for predicting the outcome, then a point each for correctly predicting goals scored for each team) with 64% accuracy compared with Kevin’s 44% and dice’ 20%. This follows a very close for with pattern and scores of the last tournament Kevin and the dice predicted, although Alex had a noticeably better accuracy.


The knockout stages were interesting. Alex again did well predicting 100% of the outcomes and the scores in the Quarter Final.   Kevin did almost as well for outcomes but was less accurate about the scores.  The dice did surprisingly well with the outcomes gaining 9 pts from a possible 12, but got no points for actual goals scored.


In the semi-finals Alex and Kevin both got 100% of the outcomes correct but the Kevin was slightly better at predicting actual score-lines. The dice though picked up zero points.


The Final was another successful round for Alex who predicted the correct outcome and goals for each team, Kevin was nearly as successful but was overoptimistic about the number fo goals England would score. Again, the dice were way off.


Viewing the tournament in its entirety it is possible to rate the overall predictive power of Alex, Kevin and the dice by compiling all of the games and predictions into a single set of calculations, by adding together scores at each round.


Total number of games = 

Alex

Kevin

Dice

 

Outcome (151 pts possible)

116 + 20 + 10 + 5

 

 

63 + 20 + 8 + 5

= 96 (63.6%)

 

45 + 12 + 6 + 3

= 66 (43.7%)

 

21 + 9 + 0 + 0

= 30 (19.9%)

 

Goals Home (31 pts possible)

24 + 4 + 2 + 1

 

 

6 + 4 + 1 + 1

= 12 (38.7%)

 

8 +  0 + 1 + 0

= 9 (29%)

 

4 + 0 + 0 + 0

= 4 (12.9%)

 

Goals Away (31 pts possible)

24 + 4 + 2 + 1

 

 

6 + 4 + 1 + 1

= 12 (38.7%)

 

7 + 1 + 2 + 1

= 11 (35.5%)

 

6 + 0 + 0 +0

= 6 (19.4%)

 

151 + 31 + 31 = 213

TOTAL POINTS 

(213 pts possible)

 

96 + 12 + 12 

= 120 (56.338%)

 

66 + 9 + 11

= 86 (40.376%)

 

30 + 4 + 6

= 40 (18.779%)


Table E showing overall tournament prediction accuracy 

 


We have used our 'Analysis Z' method used in previous tournament prediction reports.


From the table we see that Alex was most accurate at predicting the outcomes and goals, but with Kevin just when it came to predicting goals. Both of us were wrong more than we were right about the exact scores, but in terms of outcomes Alex the evens by scoring approximately 64%, in other words he was ‘right’ about two thirds of the time.  As with past tournaments there were clearly insufficient games for the laws of averages to help the random dice scores, with the dice only predicting outcomes around 20% of the time. So better to consult a soccer mad boffin about a game prediction than rolling a dice! 


Overall, the dice scored just under 20% total predictability using the Analysis Z formula of outcome (3 pts) + goals (2 pts), whereas Alex and Kevin were noticeably better (approx. 56% and 40%, respectively).

 


3.2  Comparison with other predictors


The analyst.com had England and France as even chance winners (19%) and Germany was considered as having a 15% chance of winning the tournament (https://theanalyst.com/eu/2022/06/womens-euro-2022-prediction-england-france-germany-spain-sweden-netherlands/)


The Guardian newspaper’s analysts seemed keen on England buut some favoured Spain and the Netherlands ( https://www.theguardian.com/football/2022/jul/04/womens-euro-2022-predictions-winners)

 

We can also compare our performance with the UEFA Women’s Euros 2022 with our performance of the previous international women’s football tournament that we predicted, the 2019 FIFA Women’s World Cup.  For reasons of brevity we have limited our comparison to just ‘analysis z’ and overall accuracy (outcomes and goals scored by each team in Group and knockout stages). Alex’s score improved by 3.1% whilst Kevin’s fell by the same amount. Most dramatically the dice were 20% less effective in 2022 than in 2019, explained by the random nature of this method and its lack of informed logic. However, perhaps next time this randomness could work in the other direction?



 

Overall % accuracy of predictions

 

(outcomes and goals scored by each team in Group and knockout stages)

 

 

Alex

 

Kevin

 

Dice

 

2019 

FIFA Women’s World Cup

 

 

 

53.5 %

 

 

43.5 %

 

 

33.8%

 

 

2022

UEFA Women’s Euros

 

 

 

56.4%

 

 

40.4%

 

18.8%


Table F comparing overall performance between 2019 and 2022

 

 

4.0      Conclusions


Our judgement, although not too accurate a method for predicting the tournament, was better than random chance as measured by the ‘random dice’ method. Alex in particular was correct at predicting outcomes about 64% of the time but predicting exact score lines was much more difficult.


It seems that other predictions of ‘the experts’ were probably not much better than we were at correctly predicting how the tournament would unfold, as we both thought that England would at least reach the final. Once the teams in the Final were known we both chose England, with Alex predicting the exact score and Kevin only slightly too optimistic about England’s goal haul.  


In conclusion this was a great tournament, not entirely predictable, and it was good to see England ‘bring it home’. 


To cite this publication:

 

 

·       Gillett, A.G., Tennent, K.D. (2022) ‘Predicting the 2022 Women’s UEFA European Championship: A report by the Soccer Mad Boffins’. 21st September 2022. Available online at:  http://soccermadboffins.blogspot.com/2022/09/predicting-2022-uefa-womens-european.html

 

Also in this series about predicting major international football tournament  scores:

 

·       Gillett, A.G., Tennent, K.D. (2021) ‘Predicting the 2020(21) UEFA European Championship: A report by the Soccer Mad Boffins’. 21st July 2021. Available online at:  http://soccermadboffins.blogspot.com/2021/07/euro-20202021-predictions-how-did-we-do.html

 

·       Gillett, A.G., Tennent, K.D. and Fanning, J. (2019). ‘Predicting the 2019 FIFA Women’s World Cup Finals Part 2: Knockout Stages & Overall Analysis - A report by Soccer Mad Boffins’.  12th July 2019. Available online at: http://soccermadboffins.blogspot.com/2019/07/predicting-2019-fifa-womens-world-cup.html

 

·       Gillett, A.G., Tennent, K.D. and Fanning, J. (2019). ‘Predicting the 2019 FIFA Women’s World Cup Finals Group Stages: A report by Soccer Mad Boffins’.  21st June 2019. Available online at: http://http://soccermadboffins.blogspot.com/2019/06/the-womens-world-cup-group-stage-predictions.html

 

·       Gillett, A.G., and Tennent, K.D. (2018) ‘World cup predictions: human brain, advanced statistical modelling, or completely random?’. 2nd July 2018. Available online at: http://soccermadboffins.blogspot.com/2018/07/world-cup-predictions-human-brain-or.html

 

·       Gillett, A.G., and Tennent, K.D. (2018). ‘World Cup Finals Group Stages are over...how were your predictions?’ 29th June 2018. Available online at: http://soccermadboffins.blogspot.com/2018/06/world-cup-finals-group-stages-are.html

 

 

Blog: 

·       http://soccermadboffins.blogspot.com/